Assessment Schedule

Mathematics CAS: Demonstrate an understanding of calculus methods (90807)

	Achievement Criteria	No	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT	Criteria Demonstrate an understanding of calculus methods.	1 2(a) 3	$\int_{0}^{2} (x^{2} - 2x) dx$ $= -\frac{4}{3}$ So, Area = $\frac{4}{3}$ $f'(x) = 1.52x^{3} - 8.7x^{2} + 14x - 6.1$ $f'(0.2) = -3.63584$ See graph below	A M A A	CAO, must state the positive area. Accept any rounding CAO. Look for basic shape relevant to x values. Ignore size of y values. Through approx (0,-3) and (15,-1).	Two of Code A
			-10			

	Demonstrate an understanding of a range of calculus methods.	2(b)	$m = -0.22336$ $(x_1, y_1) = (1.8, 2.076288)$ $y + 0.22336x - 1.67424 = 0$	A M	Allow reasonable rounding. Or equivalent, CAO.	Two of code M
T		4	$\int_{0}^{9} (0.09x^{2} - 1.3x + 5) dx$ $= 14.22$	A		
MERIT			Area = 28.44 m^2	M	CAO, no alternative.	
		5(a)	$a = \frac{\mathrm{d}v}{\mathrm{d}t} = 0.03t^2 - 0.5t + 2$	A		
			when $t = 6$, $a = 0.08$ when $t = 7$, $a = -0.03$			
			So change in $a = -0.11$ m s ⁻²	M	Accept numerical error from correct values, CAO.	

	Demonstrate an understanding of a range of calculus methods in solving problems.	2(c)	tp = (0.7104173, 1.5563221) and (3.3029979, 0.2476698) length = $\sqrt{(3.3-0.71)^2 + (0.25-1.6)^2}$ = 2.9 m	M E	Allow for sensible rounding.	Merit plus 1 of code E OR 2 of code E.
		5(b)	$v = \int (2t - 3) dt$ $= t^2 - 3t + c$			
			when $t = 0$, $v = 4.25$ so $v = t^2 - 3t + 4.25$	M		
			Minimum when $t = 1.5$ $v = 2 \text{ m s}^{-1}$		Must find acceleration and comment on Jayla's	
INCE		6	So Jayla was wrong.	Е	statement.	
EXCELLENCE			Curves intersect at: (20,40) & (100,40)			
EX			$\Rightarrow x_1 = 20 \text{ and } x_2 = 100$			
			$A_{1} = \int_{20}^{100} \left(\frac{1}{40} (x - 60)^{2} \right) dx$ 3200			
			$= \frac{3200}{3}$ $= 1066.67 \text{ cm}^2$	A		
			$A_2 = \int_{20}^{100} \left(\frac{1}{80} (x - 60)^2 + 20 \right) dx$			
			$= \frac{6400}{3}$ = 2133.33 cm ²	A		
			Area = 2133.33 – 1066.67 = 1066.67 cm ²	ЕМ		

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate an understanding of calculus methods.	Demonstrate an understanding of a range of calculus methods.	Demonstrate an understanding of a range of calculus methods in solving problems.
$2 \times A$	$2 \times M$	Achievement with Merit plus 1 × E
		OR
		2×E

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.